viernes, 7 de diciembre de 2012

Línea de Rayleigh



Flujo con intercambio de calor sin fricción

Las curvas de flujo de Rayleigh corresponden al flujo de fluidos a través de un cambiador, como consecuencia de esto la entalpía de estancamiento y la temperatura de estancamiento son variables, por lo que las ecuaciones presentadas para flujo adiabático no pueden ser aplicadas.

Se deberá considerar un proceso de calentamiento o enfriamiento simple, con la finalidad de poder despreciar los efectos de la fricción. Esta interpretación puede tomarse de la misma forma para las cámaras de combustión, donde la relación de la mezcla aire-combustible es tan pequeña, que los efectos causados por el cambio en la composición química y cambios de masa son relativamente pequeños, comparados con los efectos producidos por los cambios de la entalpía de estancamiento.


Después de analizar el proceso bajo el cual se presenta la Línea de Rayleigh, y dada la investigación realizada, responda las siguientes interrogantes:

¿Qué tipo de relación presenta la Línea de Rayleigh?
¿Cuáles son los principios en los que se enmarca este comportamiento?
¿Las líneas de Rayleigh se grafican sobre un diagrama de ___  vs  ____?
¿Cuál es la relación entre la Línea de Fanno y la Línea de Rayleigh?

Línea de Fanno



Flujo Adiabático con Fricción

El flujo a través de conducciones rectas de sección transversal constante, es adiabático cuando es despreciable la transmisión de calor a través de la pared de la tubería. El caso típico es el de una tubería larga en la cual entra el gas a una cierta presión y temperatura y fluye con una velocidad determinada por la longitud y el diámetro de la tubería así como por la presión a la salida. Para conducciones largas y presiones de salida pequeñas la velocidad del gas puede llegar a ser igual a la velocidad del sonido. Sin embargo, para un gas no es posible atravesar la barrera del sonido tanto en la dirección del flujo subsónico como en la del supersónico; si el gas entra en la tubería a un número de Mach mayor que la unidad disminuirá éste, pero no llegará a alcanzarse el flujo subsónico. Si se intenta que el flujo de gas pase de subsónico a supersónico, o viceversa, manteniendo una presión de descarga constante y alargando la tubería, se produce una disminución de la velocidad de flujo de masa que impide tal variación. Este efecto recibe el nombre de estrangulamiento.
Esta condición fue estudiada y graficada mediante las Líneas de Fanno (ver figura).



Después de analizar el proceso bajo el cual se representa la Línea de Fanno, y dada la investigación realizada, responda las siguientes interrogantes:

¿Qué tipo de relación presenta la Línea de Fanno?
¿Cuál es el tipo de flujo y entalpía en la que se enmarca este comportamiento?
¿Cuál es la ecuación que describe el flujo adiabático de área constante cuya familia de curvas son llamadas líneas de Fanno?
¿Las líneas de Fanno se grafican sobre un diagrama de ___  vs  ____?

 

lunes, 5 de noviembre de 2012

Flujo isentrópico a través de una tobera



Se denomina proceso isentrópico a aquel proceso en el cual la entropía del sistema permanece incambiada, es decir, constante.  La palabra isoentrópico se forma de la combinación  del prefijo “iso” que significa “igual” y la palabra entropía.
Si un proceso es completamente reversible, sin necesidad de aportarte energía en forma de calor, entonces el proceso es isentrópico.
En los procesos isentrópicos o reversibles, no existe intercambio de calor del sistema con el ambiente, entonces se dice que el proceso es también adiabático.
Para lograr que un proceso reversible sea isoentrópico, se aísla térmicamente el sistema, para impedir el intercambio de calor con el medio ambiente.
Muchos sistemas de ingeniería, como bombas, turbinas y difusores son esencialmente adiabáticos (no intercambian calor con el medio), y funcionan mejor cuando las irreversibilidades como la pérdida de energía por fricción, son minimizadas. De esta manera, los procesos isentrópicos son útiles como modelo de procesos reales.
Igualmente hay muchas aplicaciones en las que fluye un gas a través de un tubo o conducto que tiene un área variable en la cual un flujo isentrópico, continuo, uniforme es una buena aproximación de la situación de flujo existente, como se mencionó anteriormente. El difusor cerca de la parte delantera de un avión de reacción, los gases de escape que pasan a través de las aspas de una turbina, las toberas en un motor de cohete, un oleoducto de gas natural roto, y los dispositivos de medición de flujo de gas son ejemplos de situaciones que pueden ser moldeadas con un flujo continuo, uniforme, e isentrópico.



Investigar:
¿Qué es una tobera?, ¿Qué es un difusor?, Tipos y sus respectivos conceptos.
¿Quién fue De Laval? 

domingo, 21 de octubre de 2012

Módulo de compresibilidad



Para todo tipo de materia (sólido, líquido o gas), el aumento de presión (Δp), origina siempre una disminución de volumen (ΔV). En la zona de elasticidad lineal de los materiales,    la   variación   unitaria   de   volumen    (ΔV/V)   por   unidad  de   presión ((ΔV/V)/Δp), es una constante, que viene determinada por las características elásticas del material, a través del módulo de elasticidad volumétrica o módulo de compresibilidad.

Para los sólidos, K es muy grande, para líquidos K es grande y para gases K es pequeño. El signo “-“, es debido a que los sentidos de las variaciones de presión y de volumen son contrarios, es decir ante un aumento de presión, el volumen disminuye en el campo de los fluidos, si consideramos magnitudes elementales, si un determinado volumen de fluido (V) se somete a un aumento de presión (dp), el volumen se reduce en un determinado valor (dV), denominando módulo de compresibilidad del fluido a:




Un fluido poco compresible (líquidos) tiene alto módulo de compresibilidad y un fluido muy compresible (gases) tiene bajo módulo de compresibilidad. Para poder evaluar los cambios de presión y volumen (dP/dV), es necesario tener en cuenta el tipo de proceso de compresión: isotermo (a temperatura constante), isentrópico (adiabático sin efectos disipativos). Lo que da lugar a la definición de los siguientes módulos:


Módulo de compresibilidad isotermo:  Kt



Módulo de compresibilidad isentrópico:  Ks




Otra forma de evaluar la compresibilidad de un fluido, es la velocidad con la que se transmiten pequeñas perturbaciones en el seno del propio fluido; a esa velocidad se le denomina velocidad sónica o velocidad del sonido y viene determinada por:


a = √Ks/ρ

Los fluidos compresibles tienen bajas velocidades sónicas y los fluidos incompresibles tienen altas velocidades sónicas; así a 20ºC y 1atm, la velocidad del sonido en agua es de 1483,2 m/s, y la velocidad del sonido en aire es de 331,3 m/s.

Investigar el concepto de estado de estancamiento y cuáles son las propiedades de estancamiento para un flujo compresible.